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ANALYTICAL EVALUATION OF THE 
SECOND ORDER MOMENTUM 

COMPACTION FACTOR AND COMPARISON 
WITH MAD RESULTS 

J.P. SHAN and S.G. PEGGS and S.A. BOGACZ 

Fermi Notional Accelerator Laboratory : P.O. Box 500, Batavia, IL 60510 

The second order momentum compaction factor oil is a critical lattice parameter for transition 
crossing in hadron synchrotrons and for the operation of quasi-isochmnous storage rings, which 
have been proposed for free electron Iasers, aynchrotron tight somrces and recently for high lu- 
minosity e+e- colliden. First the relation between the momentum compaction factor and the 
dispersion function is established, with the “wiggling effect” included. Then an analytical ex- 
pression of at is derived for an ideal FODO lattice by solving the differential equation for the 
dispersion function. A numericalcalculationusing MAD is performed to show excellent agreement 
with the analytical result. Finally. a more realistic example, the Fermilab Main Injector, ia also 
considered. 
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1 INTRODUCTION 

In a synchrotron or storage ring, particles with different momenta have different 
closed orbits. The difference in the closed orbit length (AC) between a particle 
with momentum p and a reference particle with momentum p. may be expressed 
as an expansion in momentum offset 6 

AC = Cow,6 [l + a,6 + O(@)] , 

where Co is the length of the reference orbit, and 

6=~-~o AP -=-, 
P0 PO 

(2) 

Such a dependence of orbit length on momentum is called momentum compaction, 
and ao is the linear momentum compaction factor. The second order momentum 
compaction factor ~11 is the focus of this paper. 

* Operated by the Universities Research Association Inc., under contract with the U.S. De- 
partment of Energy. 
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Although rooted in the transverse motion, the momentum compaction effect 
influences the longitudinal motion through the phase slip factor 

1 T-To 
v=r,- 6 = 70 + q16 + c@), 

where 

70 = ,,--,1-L 
:? r; Y2 ’ 

71 = aaal+ 3p”- !t!? 
2-P Y2 

Here T is the period of revolution for a particle with momentum offset 6 and To is 
for a synchronous particle, p and y follow usual relativistic kinematic notation, and 
7~ is the transition gamma for a synchronous particle. For a conventional FODO 
lattice ^/T is roughly equal to the horizontal tune of the machine, which is about 
5 - 30 depending on the size of machine. So, most of the medium energy hadron 
synchrotrons have to cnxs transition. Near transition 1) and 70 are small and the 
contribution from the nonlinear term 

becomes very important. Nonzero ‘11 leads to the fact that higher momentum 
particles and lower momentum particles can not agree when the synchronous phase 
should be switched ‘. In reality the phase switch can only happen at one particular 
instant, so most particles have to experience a defocusing radio frequency (RF) force 
for a period of time. This may be the dominant mechanism causing emittance blow- 
up and possibly beam loss for some machines, according to tracking studies 234 and 
a preliminary experiment 5. If we can set al = -1.5, the nonlinear effect will be 
suppressed and transition crossing will become much less harmful. 

All electron machines operate well above transition, or y > ye, so 

70 0 an, ‘I1 = aoa,. (7) 

While the bunch length is roughly proportional to @, it may be possible to get 
very short bunches by using quasi-isochronous rings with very small ao values. 
These have been proposed for free electron laser drivers 5, for synchrotron light 
so”Ic.?s 7 and for the next generation of high luminosity e+e- colliders 8. There, 
the momentum acceptance of the RF bucket, which goes roughly like r~olql (or 
01;l), should be larger than 10 times the root mean square momentum spread of 
hunch 6,,, in order to preserve reasonable quantum life time. That is 

1 
Oi’<106,,,. (8) 

If 6,,, = 6 x 10m4, a value of al smaller than 170 is required, which is not necessarily 
easy to get since a0 itself is very small. 
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The above comments suggest that (II is a very important lattice parameter which 
has to be controlled in the small 7 regime. Next we turn to establish the relation 
between the momentum compaction factor and the dispersion function, with the 
“wiggling effect” included. 

2 THE WIGGLING FACTOR 

To describe the closed orbit zeO(s, 6) of an off-momentum particle, the dispersion 
function is introduced as 

D(s, 6) = 4*, 6) - %(*> 0) 
6 

= D,(s) + Dl(S)6 + O(@), (9) 

where zcO(s,O) is the reference orbit, and s is the azimuthal coordinate. Usually 
we refer to DO, the linear part of dispersion function, as the dispersion function 
because 6 < 1. Since we are interested in ~11, the first nonlinear part D1 has also 
to be included. Furthermore the effect of closed orbit offset on al is negligible 
(Appendix A), therefore we can assume z&s, 0) = 0. 

Now, consider an infinitesimal piece of arc shown schematically in Fig. 1, where 
the orbit length of a synchronous particle (AA’) is ds = pde and p is the radius of 
curvature. Then a particle with momentum offset 6 will follow the orbit BB’ with 
length 

d/l = dl,J1+ol=ds l+~6+(~+~D~2)6Z , 
[ 1 (10) 

rather than 

dl, = (p+Do6+D16’)dB=ds 1+$6+46’ , 
1 1 (11) 

where Df, = 9. Notice the difference of dlz and d/l in second order, which is 
called the “wiggling effect”. This relation is also valid for a straight sector if the 
limit p -t cu is taken in the appropriate way. There, the only difference in orbit 
length is due to the “wiggling effect”. 

The difference in total closed orbit length of an off-momentum particle from that 
of a reference particle is simply 

AC = 
! 

(d/z - ds) = 
! 

46 + cq6’)ds. (12) 

Comparison of Eq.(l) and Eq. (12) yields 

1 
LIO = - 

CO 
$ds E ($$ (13) 

and 

PllP) + PAZ) al = - 
(10 2ao’ 
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where C, = Ids and (...) means the average in the whole ring, and the last term 
in Eq. (14) is called the wiggling factor 9 

P?) w = &(Df) = - 
0 W’ol~) 

(15) 

This term is missing from some references, but will be shown to have significant 
contribution to a,. 

Betatron oscillations may also contribute to the difference in orbit length (and 
thus al). In general, this effect is very small. 

3 DIFFERENTIAL EQUATIONS FOR THE DISPERSION FUNCTION 

Motion in a circular accelerator is conveniently represented by the Hamiltonian 
(with azimuthal coordinate s instead of time t aa independent variable) lo 

where the canonical vector potential 

;+(i++!$ 
P2 

+ $I~# - 3zyZ) 1 , (17) 

for a lattice composed of separated-function magnets with hard edge. Here Ii, 
and Kz are respectively the quadrupole and the sextupole strength for a reference 
particle 

e aB Ii1 = -2 e a=B 
pae ax ) 

I&--- 
pee ax= ’ 

The canonical differential equations of motion are obtained by partial differentiation 
of H, which are expanded to become 

I’ = g= (18) 

a”H 
d= az =-~1(~-K,)r+~+~-~11*(2*--‘), (19) 

where the prime represents the differentiation with respect to s, the azimuthal 
coordinate. Combining Eq.(lS) and Eq.(lS) we get the equation of motion 

I” + (1 + 5) p g$$ - Kl)Z = (1+ 4) p &j + $ - ;I~*(2 - $), (‘JO) 
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which is exact to order 6’ Substituting z = Do6 + 016’ and y = 0 yields 

1 
D;+(L-K~)Do = ;, 

PZ 
(21) 

D;:+(+)DI = DbZ-K,&-1 1-D” 
2 

2P P ( > P 
- ;K>D;. (22) 

These inhomogenous Hill equations could be solved in principle by using Green’s 
function I’. But it is not obvious to see how the dispersion function is related 
to other lattice parameters. In the next section we will solve Eq. (21) and Eq. 
(22) explicitly for an ideal FODO lattice, which is not far away from some realistic 
lattices, as shown later. 

4 A SOLUBLE CASE: THE IDEAL FODO LATTICE 

The ideal FODO lattice that we consider is composed of N identical FODO cells, 
or 2N half cells. Each half cell (Fig. 2) t t s ar s at the center of a thin focussing 
quadrupole (QF) and ends at the center of a neighboring thin defocussing quadrupole 
(QD). The absolute integrated strength of half QF and QD is the same 

q = jK&,g = 1 
f’ 

where ICI is the quadrupole gradient, and hq and f are respectively the physical 
length and the focal length of the half quadrupole. The bending angle of each 
dipole is 

b+;xL 
R’ 

where L is the half cell length, or the length of each dipole since bq -+ 0 , and R is 
the radius of curvature for the reference particle. Another characteristic parameter 
is 

s = qL s sin fJ1lz, (23) 

which should not be confused with azimuthal coordinate s, where +1/Z is the beta- 
tron phase advance per half cell. It seems that one only needs to solve Eq.(Zl) and 
Eq.(22) in the dipole. Actually the necessary boundary conditions have also to be 
imposed by the thin quadrupoles. 

In the dipole (p = R and 1<1 = 0), Eq.(21) reduces to 

1 1 
D& + -DOB = - 

R2 R’ (24) 

which is equivalent to 

DOB + DOB = R, (25) 



where a dot represents the di&wsntiation with respect to b’. The general solution 
of Eq.(25) is 

DOB(B) = R(l + cl sin 0 + c2 cos 0). 

In a quadrupole, Eq.(21) reduces to 

(26) 

D$ - KlDoq = 0, 

which provides the boundary conditions 

(27) 

D&+$) = -nDo&%). (28) 

Here use has been made of the symmetry condition D& = 0 at the center of the 
quadrupoles. 

The continuity of D and fl dl. 

?g = (I+ $)-‘g = (1+ ;)-‘D’ 

yields 

where 

&3(*+‘) = RD&(i$) = -QDOB(++), (30) 

bd+,) = RDh#+) + D&+)D&(i+), (31) 

Substituting 

&e(O) = R(qcosB-czsin8) 

into Eq.(30), we arrive after some algebra at the solution 

Q 
cl=~=-(l+QZ)cos!f 

With the aid of Eq.(34), Eq.(26) and Eq.(33) can be rewritten as 

Do,y(S) = R[l + cl(sin8 + Qcos~‘)], 

Do,q(S) = Rcl(cosB -&sin@). 

Subtituting Eq.(35) into Eq.(13) and Eq.(15) gives 

1 
ao = ii- 0 J 

+$ 

-9 
dBDoB 

2sin+ -1- 
-=1+cz---- 

2tQ2 
R 00 &4+Q2)’ 

(29) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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where t = ton(~Oo), and the wiggling factor 

UI = (obz) = Q2 [W + @)(l + Q2) + 2t(l - Q”,] 
2ao 4(1+ Q2) [Bo(l + Q*) - 2tQ*] 

The relationships 

2t 
sin Ba = ~ 

1-P 

1+t2’ 
cos ea = - 

1+ t2 
have been used to simplify the result. 

Following the same procedure, we now solve DI. In the dipole 

D& + &DIB = -;(9 _ 1)2 + gy 

with the general solution 

D,,(S) = R [cs sin 0 + cq cos S] 

1 
1 2 12 1 

-R ~~~(1+Q~)+~~~(1-Q~)cos28-~Qc~sin2O 1 
Before solving the equation, notice 

Dl~(8) = R[cQsinB + cqcos8] - &fi,&, 

which leads to a very simple closed result 

cqal = &l; df7(% + &L&) = c‘,y. 

, 

(36) 

(39) 

(40) 

(41) 

(42) 

(43) 

TO find al, we now only need to calculate ~4. Let’s proced with Eq.(22) in the thin 
quadrupole 

DyQ - K,Dlq = -lc~D,,~, (44) 

which leads to 

D;,(*+, = --P [DI&+) - Do&$“)] 

With Eq.(31), the boundary conditions become 

(45) 

D;B(h%) = -Q DIE++) - Do,(+) + D&(*+) R 1 (46) 

By solving Eq.(46) we find 

cq = Q4(QZtZ + 3) 
2 cos $=( 1 + &x)3 (47) 
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Substituting Eq.(47) into Eq.(43) we have 

Q*t(Q*t* + 3) 
uoa1 = &,(l + Q2)3 (48) 

Further substitution of Eq.(37) into Eq.(48) allows one to write 

Q4t(Q*tZ + 3) 
a’ = (1 + Q*)2 [6’,(1+ Q2) - 2tQ2] ’ 

which could alternatively be expressed as a function of s 

sys2t2 + 3802) 

OL1 = (802 + sy [8&Z + 62) - 2tsq 

This result was also independently reached through a geometric approach’2. 
Notice that both w and al only depend on the strength of the quadrupoles and 

the number of cells. Fig. 3 and Fig. 4 are respectively plots of w and al as a 
function of s with different number of cells. For a given N, w and ~1 increase as 
quadrupoles become stronger. The possible value of s is somewhere between 0 and 
1 since s w sin4+. In the case s = 0 (cyclotron), from Eq. (37) and Eq. (49) we 
have ao = 1 and o(1 = 0 as expected. Actually we can show from symmetry that 
e,(n 2 1) = 0. For real synchrotrons 41 is usually between 30 and 45 degrees, 
and the operating range for s is 0.5 Y 0.7.‘Also notice that w and oil increase with 
N. Since N increases as ring size (roughlyN o( a), w and ~(1 are bigger for larger 
machines. 

In the case N + co, the centrifugal focussing of dipoles becomes negligible, and 
the analytical results reduce to 

5 COMPARISON WITH MAD 

In general, the differential equations cannot be solved analytically and numerical 
method has to be used. Unfortunately, al is not directly available from the general 
codes such as MAD 13, which instead return the momentum compaction factor (I~. 
The value of al has to be extracted from the dependence of a(p on 6. Care must be 
taken about which definition of ap is used in a specific code. It may be 

P dC 
““=-F 

= 010 1+2(ai+; - &)6 1 + 0(62), (54) 
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P, dC 
%2 = c,dp = oo(1 + 2a16) + O(P), (55) 

or something else. It is also important to test these coda using some very simple 
lattices, for which an analytical solution is possible. If there is a good agreement, 
we can have confidence in numerical solutions of realistic lattices such as the Main 
Ring or the Main Injector, or an isochronous ring. 

A lattice composed of 80 simplified FODO cells was set up as input to MAD. 
The length of a quadrupole was chosen as 1 micron. For every s, the momen- 
tum compaction factor aP is calculated by MAD at three momentum offsets 6 = 
-O.OOl,O, +O.OOl. Then cq was extracted from crP depending upon the definition 
of aP, either 

al = 91(6) - qo-6) 
4~106 

if aP = aPl, or 

al = 46) -4-4 
4a,,6 ’ (57) 

if a,, = crP2. If we use the first definition, a large disagreement occws between the 
MAD result and the theoretical prediction from Eq.(49). However, excellent agree- 
ment is achieved using the second definition, as shown in Fig. 5. The systematic 
discrepancy found in ref. I4 is now understood. 

6 DEVIATION FROM THE IDEAL FODO LATTICE 

Taking the Main Injector (N = 80, s = sin $ = &)I5 as an example, we will see 
how the deviations from an ideal FODO lattice affect al. 

6.1 Sector Dipoles and Rectangular Dipoles 

In the ideal lattice we assumed there was no dipole edge focussing, a5 with sector 
dipoles. In reality the Main Injector dipole is rectangular. How important is this? 
Fig. 5 shows that the difference between sector dipoles and rectangular dipoles 
is negligible in the case of Main Injector. But as the cell phase advance and/or 
number of cells decreases the edge focussing becomes more important. So special 
care has to be taken with edge focussing in small accelerator rings. 

6.2 Finite Length Quadrupole 

For the simplicity of analytical solution, we have used a thin quadrupole approxi- 
mation. What happens if quadrupole has finite length? From the MAD calculation 



(Tab. l), we see that the contribution of finite quadrupole length is also negligi- 
ble. This is not a surprise because the dominant source of momentum compaction 
comes from dispersion in dipoles, and the boundary conditions are dominated by 
the integrated strength of the quadrupoles. 

TABLE 1: The dependence of 011 on the half quadrupole length 

Half Quadrupole Length IQ(m) 1 1 x 10e6 1 0.1 1 0.5 
@I 1 1.545 1 1.546 I 1.550 

6..9 Contribution from Seztupoles 

Because of the head-tail instability, the natural chramaticity is usually compensated 
by sextupoles. If the sextupole strengths are set to make the net chromaticity 1 -f 
times the natural chromaticity, DO (and thus 0~~ and w) will not change while D1 
will be modified, as shown in I4 

(P,=$(l-f+$) (58) 

This approximation is true when the focussing from dipoles is negligible. Then 

(59) 

So, when the net chromaticity is compensated to zero, or f = 1 

1+$ 
0.5 5 01 = 2 (1 _ g) I 3% 

because 0 5 s < 1. For the Main Injector s2 = 0.5, and we have c(~ = 0.587. A 
value of oil = -1.5 can be obtained in principle by setting 

f =3, (‘51) 

resulting in unpleasantly strong nonlinear fields. 

7 CONCLUSION AND DISCUSSION 

Starting with a Hamiltonian, we derived the differential equation for the two lead- 
ing terms in the dispersion function, which is exact for any lattice composed of 
separated-function magnets with hard edge. The linear term Do is determined 
only by linear elements (dipoles and quadrupoles). The first nonlinear correction 
D1 also depends on sextupoles, but not on octupoles or higher order magnets. 
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For an ideal FODO lattice, the differential equations were solved to get analytical 
expressions for ao, w and al. A comparison with MAD calculations of momentum 
compaction factor showed perfect agreement. Then MAD was used to show that 
conventional FODO-like lattices are not far away from the ideal one. In a large 
machine such as the Fermilab Main Injector, we found that al is not sensitive to 
quadrupole length and edge focussing. 
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APPENDIX A THE EFFECT OF CLOSED ORBIT OFFSET ON a, 

In section 2 we assume that closed reference orbit is flat, zeo = 0. Actually there 
is always a closed orbit offset due to various errors. Since such an offset z~. is 
comparable to 06, it is natural to ask if it will affect the calculation of ml. The 
answer is that this effect is negligible for any realistic orbit offset. 

For mathematical convenience, consider a simple model lattice, where the undis 
torted closed orbit is a circle with radius R. Now, if the distorted closed orbit for a 
reference particle is zcO(s), its circumference will be 

Co = 2nR 1+ $$ + ;(.:1,)) , 

where (z) = & $ zds. The closed orbit length of a particle with momentum offset 
6 is 

1+ 9 + ;(r:‘,(&))] , (63) 

where 

z(S),0 = zeo + Do6 + 016’. (‘34) 

If Eq.(63) is reorganized into an expansion of 6 with the aid of Eq.(62) and 
compared to Eq.(l), we get 

q + (&Db) 

aa = 1 + 9 + +.;a, 

0, = Qg + i(D$ + (c&D;) 
q + (+pb) 

(65) 

(66) 

Since the dispersion wave and the orbit offset wave have approximately the same 
wavelength (cell length), the effect of closed orbit offset on al is negligible so long 
as zeO < Do, D,, which is always true in any practical case. 
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FIGURE I: Sdwnatic view of the wiggling dkct 
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FIGURE 5: The comparisor~ of a, calculated from MAD (diamond symbols) and 
predicted by the analytical expression (solid line) for an ideal FODO lattice with 
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symbols) and the rectangular dipole case (plus symbols) becomes important in weak 
focussing machines. Also, one can see when t,he approximate formulae (N = m, 
dash line) begin 1.0 deviate front the exact result (solid line). 


